

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

DEPARTMENT OF ELECTRICAL ENGINEERING

S. N	Board of Subject		Subject	Periods per week		Scheme of exam			Total	Credit	
0	Study	Code	Subject	L	Т	P	Theo	ory/Pra	ctical	Marks)/2
0.							ESE	CT	TA		
1.	Electrical Engg.	EE226101	Power System Dynamics and Stability	3	1	-	100	20	20	140	4
2.	Electrical Engg.	EE226102	Computer Methods in Power System	3	1	-	100	20	20	140	4
3.	Electrical Engg.	EE226103	Digital Power System Protection	3	1	-	100	20	20	140	4
4.	Electrical Engg.	EE226104	5104 Flexible AC Transmission System (FACTS)		1	-	100	20	20	140	4
5.	Refer	Table-I	Elective-I	3	1	-	100	20	20	140	4
6.	Electrical Engg.	EE226191	Problem Solving Approach using MATLAB	-	-	3	75	-	75	150	2
7.	Electrical Engg.	EE226192	Protection Simulation Lab	-	-	3	75	-	75	150	2
		TOTAL		15	5	6	650	100	250	1000	24

M.Tech. in Power Systems Engineering **FIRST SEMESTER**

Table -I

	Elective- I						
Sr. No.	Board of Study	Subject Code	Subject				
1	Electrical Engg.	EE226121	Power Electronics for Renewable Energy System				
2	Electrical Engg.	EE226122	Application of DSP to Power System				
3	Electrical Engg.	EE226123	Smart Grid Technology				

Lecture	T- Tutorial	P- Practical	ESE- End Semester Exam
CT- Class Test	TA- Teachers Assessment		

1/4thof total strength of students subject Note(1)tominimumoftwentystudentsisrequiredtoofferan elective in the college in a Particular academicsession.

Note(2)-

Choiceofelectivecourseoncemadeforanexaminationcannotbechangedi nfutureexaminations.

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

M. Tech (Power System Engineering)							
Subject Code	Power System Dynamics and Stability	L = 3	T = 1	$\mathbf{P} = 0$	Credits = 4		
EE226101	ESE	СТ	TA	Total	ESE Duration		
Evaluation Scheme	100	20	20	140	3 Hrs		

COURSE OBJECTIVES	COURSE OUTCOMES
1. To understand the concept of dynamic	1. The understanding of dynamic modelof
model of synchronousmachine.	synchronous machine will bedeveloped.
2. To study the multi-machine simulation of	2. Simulation study of multi-machinedynamic
dynamicmodels.	model will be delivered.
3. To understand the concepts of thesmall	3. The concepts of small signal stability willbe
signalstability.	understood.
4. To investigate the physical and	4. The different aspect of energyfunction
mathematical aspect of energyfunction	methods will beinvestigated.
methods.	The concept of voltage stability and sensitivity
To discuss the concept of voltage stability	analysis will be understood.
and sensitivity analysis.	

UNIT – I Introduction to PowerSystemStability

Power System Operation and Control.Stability problems faced by power systems, Impact on power system operation and control.

Analysisof Dynamical Systems: Concept of Equilibrium, Small and Large Disturbance Stability. Single Machine Infinite Bus System, Modal Analysis of Linear Systems, Analysis using NumericalIntegrationTechniques. [10Hrs]

UNIT – II Modelingof ASynchronousMachine

Physical Characteristics, Rotor Position Dependent model, Park's Transformation, Model with Standard Parameters, Steady State Analysis of Synchronous Machine, Short Circuit Transient Analysis of a Synchronous Machine, Synchronous Machine Connected to Infinite Bus. [10Hrs]

UNIT – III ExcitationSystems

Simplified View of Excitation Control, Control Configurations, Typical Excitation Configurations, Excitation Control System Definitions, Voltage Regulator, Excitation System response, State – Space Description of the Excitation System, State Space Representation of the Excitation system,

Effect of Excitation on Stability: Effect of Excitation on Generator Power limits, Effect of the Excitation System on Transient Stability, Effect of Excitation on Dynamic Stability, [10Hrs]

CO2

CO1

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

UNIT – IV Stability Issuesin InterconnectedPowerSystems

Single Machine Infinite Bus System, Multi-machine Systems, Stability of Relative Motion, Frequency Stability: Centre of Inertia Motion, Concept of Load Sharing: Governors, Single Machine Load Bus System: Voltage Stability, TorsionalOscillations. [10Hrs]

UNIT - V EnhancingSystemStability:

Planning Measures, Stabilizing Controllers (Power System Stabilizers), Operational Measures-Preventive Control, EmergencyControl. [10Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	Power System Dynamics	K.R. Padiyar	2002	B.S. Publications, Hyderabad,
2)	Power System Stabilityand Control	PrabhaKundur	1993	Mc-Graw HillInc, New York
3)	Power system control and stability	P.M. Anderson and A.A. Fouad	2nd edition, 2002	B.S. Publications Hyderabad,
	Power System Dynamics and Stability	Peter W. Sauer &M. A. Pai,	2008	Prentice Hall

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1)	Power System Dynamics: Stability and Control	K.R. Padiyar	1st edition 2004	Anshan
2)	Power System Stability	E.W. Kimbark	Vol. 2, 2000	IEEE press, N.Y,
3)	Power System Voltage Stability	Taylor C.W	1993	Mc-Graw Hill Inc, New York

CO4

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Code EE226102	Computer Methods in Power System	L=3	T = 1	P = 0	Credits= 4
Evaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
Course Objectives This course will cover the 1. Modeling issues and analysis methods for the power flow, short circuit, contingency and stability analyses, required to be carried out for the power systems. 2. Necessary details of numerical techniques to solvenonlinear algebraic as well as differential equations willalsobeincluded. 3. Different types of stability phenomena have been observed in the power systems, which need to becritically analyzed, utilizing	Course OutcomesOnsuccessfulcompletion of the course, the studentwillbeableto:CO1:-Develop proper mathematical models for analysisof a selected problem like load flow study or faultanalysis.CO2:-Student able to analysis of different type fault in apower system.CO3:-Student able to understands different load flowtechniques.CO4:-Student able to understand stability analysis ofpower systemCO5:Student able to understand the power system
differential equations willalsobeincluded. 3. Different types of stability phenomena	CO3 :-Student able to understands different load flow techniques. CO4 :-Student able to understand stability analysis of
have been observed in the power systems, which need to becritically analyzed, utilizing appropriate dynamic model of thesystem.	CO4:-Student able to understand stability analysis of power system CO5:- Student able to understand the power system security concepts

UNIT– INetworkequations:

Network equations, graph theory, Bus admittance matrix by step by step method, primitive network, bus incidence matrix, formation of Y_{bus} by singular transformation, bus impedance matrix by inversion of Y_{bus} , algorithm for bus impedance matrix, addition of a branch, addition of link, modification of Z_{bus} by changesinprimitivenetwork. Conceptofusingthesematricesforloadflowstudyandfaultstudy.[8Hrs]

UNIT-IIFault Analysis:

Fault Analysis, [ZBUS] Building algorithm, sequence matrices, Symmetrical and Unsymmetrical Short-Circuit Analysis of Large Power Systems, Phase Shift in sequence quantities due to transformers. **10Hrs**]

UNIT-III LoadFlowStudy:

Introduction, power systemequations, solution technique ieGauss Seidel, Newton Raphson and fast decoupled load flow, incorporation of voltage controlled busses, representation of transformer, introduction to optimal loadflowtechnique. [10Hrs]

UNIT-IVTransientStabilityStudies:

Introduction, swing equation, machine equations, power system equations, solution techniques, example of transient stability calculations, exciter and governor control system, description of transient stability program.

UNIT- VPowerSystemSecurity:

Introduction, Factors affecting Security, State Transition Diagram, Contingency Analysis Using Network Sensitivity Method and AC Power Flow Method, Correcting the Generation Dispatch Using Sensitivity Methods, Introduction toStateEstimation. [10Hrs]

CO1

CO3

CO4

CO2

[10Hrs] **CO5**

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	Computer Aided Power System Analysis.	George L. Kusic	1989.	Prentice Hall of India (P) Ltd.
2)	Power System Analysis	Arthur R. Bergen, Vijay Vittal	2nd Edition 1999	Prentice Hall of India (P) Ltd.

S. No.	Title	Authors	Edition	Publisher
1)	Power System Analysis	A. Sadat	2000	McGraw Hill Co. Ltd
2)	Modern Power System Analysis	I.J. Nagarath, D.P. Kothari	1994	Tata McGraw-Hill, New Delhi
3)	Computer Aided Power System Analysis & Control	A.K. Mahaianabis, D.P. Kothari, S.I. Ahson	1988	Tata McGrawHill New Delhi

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Code	Digital Power System Protection	L=3	T= 1	$\mathbf{P} = 0$	Credits=4
EE226103					
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
 To illustrate concepts oftransformer protection. To describe about the various schemesof over- currentprotection. To analyze distance and carrierprotection. To familiarize the concepts ofBusbar protection and Numericalprotection. To distinguish all kinds of relays for protection of Generators, Transformersand feeder bus bars fromover voltages and other hazards. 	 Upon the completion of the subject, the student will be able to 1. Describe the necessity for the protection of alternators, transformers and feeder bus bars from over voltages and other hazards 2. Illustrate neutral grounding, and how over voltages canbe generated and how system can beprotected against lightning and switching transient over voltages with various protective means. 3. Identify operation and control of numerical basedrelays.

UNIT–I Protective Relaying

Qualities of relaying, Definitions, Codes, Standards, Characteristic Functions, Classification, analog-digitalnumerical, schemes and design, factors affecting performance, zones and degree of protection, faults types and evaluation, Instrument transformers for protection.

UNIT-II Static Relays: Basic static relay units, sequence networks, fault sensing data processing units, FFT and Wavelet based algorithms, Phase& Amplitude Comparators, Duality, Zero Crossing/Level Defectors, Relay Schematics and Analysis, Over Current Relay, Instantaneous/Inverse Time –IDMT Characteristics; Directional Relays; Differential Relays, Restraining Characteristics; Distance Relays: Types, Characteristics;

UNIT-IIIProtection of Power System Equipment: Generator, Transformer, Generator, Transformer Units, Transmission Systems, Bus-bars, Motors; Pilot wire and Carrier Current Schemes; System grounding, ground faults and protection, Load shedding and frequency relaying, Out of step relaying, Re-closing and synchronizing.

UNIT-IV Numerical relays: Characteristics, Functional Diagrams, architecture, algorithms, Microprocessor & DSP based relays, sampling, aliasing, filter principles, Integrated and multifunction protection schemes, SCADA based protection systems, FTA, Testing of Relays.

UNIT-V Real Time Operating Systems:

AC Circuit Breakers : Current interruption, Transient Recovery Voltage (TRV), Rate of rise of TRV, Resistance switching, Damping of TRV, Opening Resistors, Inductive & Capacitive current interruptions, Currentchopping, Rated characteristics of Circuit breakers, Types of Circuit Breakers, Testing of High Voltage AC Circuit Breakers

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

S.No.	Title	Authors	Edition	Publisher
1)	Power System Protection &	B. Ram	2011	McGraw Hill
	Switchgear			
2)	Digital Power System Protection	S.R.Bhide	2014	PHI
3)	The art and science of protective	C.R. Mason	1964	Wiley India Pvt. Ltd
- 5)	relaying			

S. No.	Title	Authors	Edition	Publisher
1)	Digital Protection- Protective Relaying from Electromechanical to Microprocessor	L. P. Singh	1997	New Age International
2)	Power system protection static relays with microprocessor	T.S.Madhav Rao	1989	Tata McGraw
3)	Protective Relaying, Principles and Applications	Blackburn, J. Lewis	1986	Marcel Dekker, Inc

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SubjectCode EE226104	Flexible AC Transmission System	L= 3	T = 1	$\mathbf{P} = 0$	Credits= 4
Evaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
 To understand the fundamentals of FACTS Controllers, Importance of controllable parameters and types of FACTS controllers & theirbenefits To recall the objectives of Shunt and Seriescompensator. To explain control of STATCOM and SVC and their comparison And the regulation of STATCOM To analyze the functioning and control of GCSC, TSSC, TCSC and SSSC To analyze the functioning and control of combined Compensators(IPFC& UPFC) 	 On successful completion of the course, the student Will be able to: Choose proper controller for the specificapplication based on system requirements. Understand various systems thoroughly and their requirements. Interpret the control circuits of Shunt Controllers SVC & STATCOM for various functions viz. Transient stabilityEnhancement. Detect the Power and control circuits of Series Controllers GCSC, TSSC, TCSC,SSSC Detect the Power and control circuits of combined Compensators(IPFC&UPFC)

UNIT-IFactsConcepts

Fundamentals of AC power transmission, Transmission problems and needs, Overview of stability, Power Flow in AC System, FACTS Concept and General System Considerations, Definitions on FACTS, Basic types of FACTSControllers. [8Hrs]

UNIT-IIStaticShuntCompensators:

Concept of Static Shunt Compensators, variable impedance type shunt compensators (TCR, TSC, FC-TCR, TSC-TCR) - circuit diagram, principle of operation, working, waveforms / characteristics. Switched converter type shunt compensator (SVC and STATCOM) - circuit diagram, principle of operation, working, waveforms / characteristics SVC and STATCOM, and its control scheme .Comparison between SVC and STATCOM

UNIT-IIIStaticSeriesCompensators

Concept of series compensation, variable impedance type series compensators (GCSC, TSSC, TCSC, SSSC), Switching converter type series compensators - circuit diagram, principle of operation, working, [10Hrs] waveforms/characteristics, control schemes forseriescompensators.

UNIT-IVCombinedCompensators

Combined Series-Series FACTS compensators and other special purpose of Interline power flow controller (IPFC) - objectives and need, principle of operation.

Combined Series-Shunt FACTS compensators and other special purpose of Unified Power flow Controller (UPFC) - objectives and need, principle of operation. [10Hrs]

UNIT-VPhaseAngleRegulators

Objectives of Static voltage and phase angle regulators, power flow control, improvement of transient stability,

CO1

CO2

[10Hrs]

CO3

CO4

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Power oscillation damping, thyristor-controlled voltage and phaseangleregulators. [10Hrs]

TextBooks:

S. No.	Title	Authors	Edition	Publisher
1)	Reactive Power Control in Electric Systems	T.J.E Miller	2003	John Wiley & Sons
2)	FACTS Controllers in Power Transmission and Distribution	K.R.Padiyar	2007	NewAge International

S.	Title	Authors	Edition	Publisher
1)	Understanding FACTS: Concepts and Technology of Flexible AC	N.G. Hingorani& L. Gyugyi	2000	IEEE Press

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

M. Tech (Power System Engineering) First Semester

Subject CodeProblem SolvingMATLAB		L = 0	T = 0	P = 3	Credits = 2
EE226191	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	75		75	150	

List of Experiments

- 1. Introduction to MATLAB and other Simulation software
- 2. Determination of time response of an R-L-Ccircuit.
- 3. Z-bus and Y-bus formulation and theirinversion.
- 4. Load flow studies (Gauss-Siedle method, Newton Raphsonmethod)
- 5. Flow study with Fast DecoupledMethod.
- 6. Fault analysis (balanced and unbalanced)
- 7. Solution of Swing equations by modified Euler'smethod.
- 8. Simulating Power Systems with Simulink
- 9. Solution of Power System equations using Modified Euler's Method.
- 10. Solution of Swing equations using Runge Kutta method(RK4).

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Code	Protection Simulation Lab	L=0	T=0	P =3	Credits= 2
EE226192	ESE	СТ	ТА	Total	ESEDuration
Evaluation Scheme	75	-	75	150	-

List of Experiments

- Ratio Test of a C.T and determination oferror.
- Determination of knee point voltage of aCT.
- Summation Transformercharacteristics.
- Study of CT Connection for E/Fprotection.
- Study of Open delta PT Connection for earth faultindication.
- Protection of 3 ph. Alternator (simulationstudy).
- Protection of 3 ph. Induction Motor (simulationstudy).
- Over current / under voltage / Negative sequence Relay Characteristics (simulationstudy).
- Simulation of Transmission lineprotection.
- Study of differential protection of transformer (simulationstudy).

An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

M. Tech (Power System Engineering) Elective Subjects

Subject Code EE226121	Power Electronics For Renewable Energy System	L=3	T =1	P=0	Credits=4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	

Course Objectives	Course Outcomes
 -> To Provide knowledge about the stand alone and grid connected renewable energy systems. -> To equip with required skills to derive the criteria for the design of power converters for renewable energy applications. -> To analyze and comprehend the various operating modes of wind electrical generators and solar energy systems. -> To design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems. -> To develop maximum power point tracking algorithms. 	Onsuccessfulcompletion of the course, the student will be able to: CO1:-Examine the various types of renewable energy sources CO2:-Acquiring the knowledge about the performance of IG, PMSG, SCIG and DFIG CO3:-Ability to fabricate different power converters namely AC to DC , DC to DC and AC to AC converters for renewable energy sources CO4:-Analyze various operating modes of wind electrical generators and solar energy system CO5:-Strengthen the knowledge about maximum power point tracking algorithms

UNIT-I Introduction:

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewableenergysystems. [8Hrs]

UNIT- II Electrical Machines For RenewableEnergy Conversion:

Reference theory fundamentals-principle of operation and analysis: IG(Induction Generators), PMSG(Permanent Magnet Synchronous Generator), SCIG(Squirrel-Cage Induction Generator) and DFIG (Doubly-FedInductionGenerator). [8Hrs]

UNIT-III Power Converters:

Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing Wind: Three phaseAC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters.[8Hrs]

CO1

CO2

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

UNIT- IV Analysis Of Wind AndPvSystems:

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system- Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integratedsolarsystem. [8Hrs]

UNIT- V Hybrid RenewableEnergySystems:

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power PointTracking(MPPT). [8Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	Wind Electrical Systems	S. N. Bhadra, D.Kastha, S.Banerjee	2005	Oxford University Press
2)	Non-conventional Energy sources	B.H.Khan	2009	Tata McGraw-hill Publishing Company, New Delhi

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1)	Power electronics Hand book	Rashid .M. H	2001	Academic press
2)	Variable speed generators	Ion Boldea	2006	Taylor & Francis group
3	Non conventional energy sources	Rai. G.D	1993	Khanna publishes
4)	Wind energy system	Gray, L. Johnson	1995	Prentice Hall of India (P) Ltd.
5)	Introduction to Modern Power Electronics	Andrzej M. Trzynnadlowski	2 nd edition, 2012.	Wiley India Pvt. Ltd

CO5

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Code EE226122	Application of DSP to Power System	L= 3	T = 1	P = 0	Credits= 4
Evaluation	ESE	СТ	TA	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

CourseObjectives	CourseOutcomes
CourseObjectivesThis course will cover the1. Comprehend characteristics of varioustypes of signalprocessing.2. Analyze and process signals using wavelettransformtechniques.3. Analyze linear estimation of signals andapplications.4. Illustrate the study of adaptive signalprocessing.	CourseOutcomesOnsuccessfulcompletion of the course, the studentwillbeableto:CO1:-Design multi rate signal processing of signalsthrough systems.CO2:-Perform statistical analysis and inferences onvarious types of signal processing.CO3:-Design 2-D and 3-D signals and systems.CO4:-Perform different types of application on linearestimation on signals.CO5:-Design filters to suit specific requirements for
	specific applications.

UNIT- I MultirateSignalProcessing:

CO1

Decimation, Interpolation, DFT filter banks, QMF filter banks, Multiresolution Signal analysis, Wavelet theoryof sub-band decompositions, Sub-band coding and wavelet transforms, application of wavelet transforms.[8Hrs]

UNIT- II HomomorphicSignalProcessing:	CO2
Homomorphic system for convolution, properties of complex spectrum, Applicationsof	
homomorphicdeconvolution.	[10Hrs]
UNIT-III Multi-DimensionalSignalProcessing:	CO3
Review of convolution and correlation, 2-D signalsandsystems.	[10Hrs]
UNIT- IV Linear estimation of Signalsandapplications:	CO4
Random Signals, Linear prediction and applications (deconvolution, least square filters). Recur	sive estimation
and Kalmanfilters.	[10Hrs]
UNIT- VAdaptiveSignalProcessing:	CO5
Adaptive filters and its applications.	[10Hrs]

Adaptive filtersand itsapplications.

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	Multirate Systems and Filter Banks	P.PVaidyanathan	1993	Prentice Hall of India (P) Ltd.
2)	Introduction to DSP	Proakis, Manolakis	1994	PHI Publishers

S. No.	Titlee	Authors	Edition	Publisher
1)	Introduction to Wavelet Transforms	Barrus, Gopinath, Guo	1998	Prentice – Hall, New Jersey
2)	Discrete Time Signal Processing	A V Oppenheim, R W Schafer	1994	PHI Publishers

An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Code EE226123	Smart Grid Technology	L= 3	T = 1	P = 0	Credits= 4
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	20	140	3 Hours

CourseObjectives	CourseOutcomes		
 This course will cover the To understand various Power quality issues in Microgrid and introduction to Smart Gridtechnologies. 3. To understand Renewable Energy and its storage options for smart gridtechnologies. 4. To understand Smart Grid measurement & communicationtechnology. 	Onsuccessfulcompletion of the course, the student will be able to: CO1 :-Understand the concept and evolution of smart grid. CO2 :-Smart grid communication and measurement technologies like Phasor Measurement Unit(PMU), Smart meters, Wide Area Monitoring system (WAMS)etc. CO3 :-Understanding the concept of micro Grids and Distributed EnergyResources. CO4 :-Power quality issues in microgridslike modelling and stability analysis, regulatory standards and economics and basic smart grid concepts. CO5 :-know about the information and Communication Technology For Smart Grid		

UNIT-I Introduction toSmart grid

Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self-Healing Grid, Present development & International policies in SmartGrid. [8Hrs]

UNIT- II Smart Grid Communications and Measurement Technology:

Communication and Measurement -Monitoring, Phasor Measurement Unit (PMU), Smart Meters, Wide area monitoring systems (WAMS) -Advanced metering infrastructure- GIS and Google Mapping Tools, IP-based Systems, NetworkArchitectures. [10Hrs]

UNIT- III Micro Grids and DistributedEnergyResources:

Conceptofmicrogrid,need & applicationsofmicrogrid,formationofmicro grid,issuesofinterconnection, protection & control of micro grid. Islanding, need and benefits, different methods of islandingdetection. DistributedEnergyResources:Smallscaledistributedgeneration,DistributedGenerationTechnology,Internal Combustion Engines, Gas Turbines, Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as a DG. Advantages and disadvantages ofDG.

CO1

CO2

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

UNIT- IV: Power Quality Management inSmartGrid:

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

[10Hrs]

UNIT- V: Information and Communication Technology ForSmartGrid:CO5Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network(NAN), Wide Area Network (WAN). Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication,Wireless Mesh Network, Broadband over Power line (BPL). Adaptive filtersandapplications.[10Hrs]

Text Books:

S. No.	Title	Authors	Edition	Publisher
1)	The Smart Grid: Enabling Energy Efficiency and Demand Response	Clark W. Gellings,	1993	CRC Press
2)	"Smart Grid: Technology and Applications"	JanakaEkanayake, N. Jenkins, K. Liyanage, J. Wu, Akihiko Yokoyama	1994	Wiley India Pvt. Ltd

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1)	Smart Grid: Fundamentals of design and analysis	James A.Momoh	2012	John Wiley & sonsInc
2)	Smart Grid: Integrating Renewable, Distributed & Efficient Energy	Fereidoon P. Sioshansi	2012	Academic Press